The Patent Ductus Arteriosus (PDA) and the Preterm Baby

Tanya Hatfield, RNC-NIC, MSN
Neonatal Outreach Educator
Objectives

- Describe normal cardiac physiology and development
- Understand the unique physiologic needs of the preterm infant with a PDA
- Define the implications prematurity presents with the cardiac system
Normal Cardiovascular Function: Review

Normal Cardiovascular Function: Review

Right
Lungs
Pulmonary Artery (PA)

Left
Body
Systemic Aorta (Ao)
Fetal Circulation

(c) Scheme of fetal circulation
Fetal Circulation

- Gas exchange is liquid to liquid
- Organ of respiration is placenta
- High flow, low resistance
- Fetal lungs
 - Low flow, high resistance
- PA’s constricted
- High right heart and lung pressures
- Low left heart pressures
- Open fetal shunts
Review of Fetal Shunts

- Ductus arteriosus
- Foramen ovale
- Ductus venosus
The PDA and the Fetus

The ductus arteriosus serves to divert blood away from the fluid-filled lungs toward the descending aorta and placenta.
The PDA and the Fetus

- Has a high level of intrinsic tone
- Produces several vasodilators that oppose the ability of the intrinsic tone and oxygen to constrict the vessel
Vasodilators Present in Ductus Arteriosus

- PGE_2
 - Most potent prostaglandin produced by the ductus
- PGI_2
- Nitric Oxide
Did you know that NO and prostaglandin production occurs in the tunica intima?
Introducing the Vasa Vasorum -

- The vasa vasorum is a network of small blood vessels that supply the walls of larger blood vessels
Vasa Vasorum Preterm vs Term
Ductal Constriction and the Full-Term Infant

- ↑ Arterial PaO₂
- ↓ Blood pressure within the ductal lumen
- ↓ Circulating PGE₂
- ↓ Number of PGE₂ receptors in the ductal wall
In the Full Term Neonate…

▪ Marked reduction in vasa vasorum flow

▪ Loss of flow leads to a threefold increase in diffusion distance for oxygen across the ductus wall

▪ Profound ductal wall hypoxia occurs before luminal flow has been eliminated
In the Full Term Neonate...

- Profound ductal wall hypoxia
 - Inhibits local production of PGE$_2$ and NO
 - Produces smooth muscle apoptosis
 - Induces local production of growth factors
 - TGF-β Transforming growth factor-β
 - VEGF vascular endothelial growth factor
In the Preterm Neonate…

▪ Ductus frequently remains open for many days after birth

▪ Even with constriction the premature ductus frequently fails to develop profound hypoxemia
 • Vessel does not undergo anatomic remodeling
 – Susceptible to vessel reopening
Ductal Constriction and the Preterm Infant

- Intrinsic tone of the extremely immature ductus is <70% compared to term infant
- ↑ Sensitivity to the vasodilating effects of PGE$_2$ and NO
In the Preterm Neonate...

A PDA is normal on DOL 3 and may remain open through the first week of life in 50% of preterm infants
In the Preterm Neonate...

- The presence of a hemodynamically significant PDA with a large left-to-right shunt is a common cause of morbidity in the extremely premature neonate
Incidence of PDA by Postnatal Age

<table>
<thead>
<tr>
<th>Gest (wk)</th>
<th>Healthy</th>
<th>RDS</th>
<th>Healthy</th>
<th>RDS</th>
<th>Healthy</th>
<th>RDS</th>
<th>Healthy</th>
<th>RDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>>40</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38-40</td>
<td>85</td>
<td>50</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34-37</td>
<td>96</td>
<td>42</td>
<td>12</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-33</td>
<td>87</td>
<td>31</td>
<td>56</td>
<td>13</td>
<td>25</td>
<td>0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>≤29</td>
<td>80</td>
<td>40</td>
<td>84</td>
<td>20</td>
<td>77</td>
<td>7</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>
A Hemodynamically Significant PDA May Increase the Risk of...

- Intraventricular hemorrhage
- Pulmonary edema/hemorrhage
- Necrotizing enterocolitis
- BPD/ventilator dependence
- Retinopathy of prematurity
- Surgical intervention
- Death
Pathophysiology of a PDA…

▪ Term infants-
 • Left ventricular distension may produce a higher ventricular end-diastolic pressure at smaller ventricular volumes

▪ Preterm infants
 • Ventricles are less distensible than term and generate less force per gram of myocardium
 • The relative lack of ventricular distensibility is more a function of the tissue rather than poor muscle function
Dependent on:
- Magnitude of left-to-right shunting
- Cardiac and pulmonary responses to shunting
- How do term and preterm infants differ in presence of PDA?
True or False???

Preterm infants can triple their cardiac output better than a marathon runner?
Redistribution of Systemic Blood Flow

Even with a small PDA blood is shunted away from the:

• Skin
• Bone
• Muscle
• GI tract
• Kidneys
Shunting May Cause…

- Decreased perfusion
 - Due to a drop in diastolic pressures
- Decreased blood flow to organs
- Localized vasoconstriction… why?
- Organs may experience significant hypoperfusion before there are any signs of left ventricular compromise
How Does a PDA Present?

Actual Monitor of Preemie with Significant PDA
PDA Presentation

- Usually asymptomatic when ductus is small
- Bounding pulses
- Palmar pulses
- Active precordium
- Wide swings in oxygen saturation
- Murmur
- Widening pulse pressure (>20mm Hg)
- Low diastolic pressure
Hemodynamically Significant PDA

Patent Ductus Arteriosus in Premature Neonates

(Mezu-Ndubuisi et al, 2012)

Cardiovascular Distress Score (CVD) in Premature Infants with PDA [38]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td><160</td>
</tr>
<tr>
<td>Heart murmur</td>
<td>None</td>
</tr>
<tr>
<td>Peripheral pulse</td>
<td>Normal</td>
</tr>
<tr>
<td>Precordial pulsation</td>
<td>None</td>
</tr>
<tr>
<td>Cardiothoracic ratio</td>
<td><0.60</td>
</tr>
</tbody>
</table>
PDA Presentation

- ↑ Vascular markings on CXR
- ↑ Heart size is a late sign
- Apnea or worsening respiratory status
- Prolonged capillary fill time from ↓ systemic output
Diagnostics for Diagnosis of PDA

- Chest x-ray
- Echocardiogram
- BNP
Chest X-ray of CHF

- The increase in left ventricular pressure increases pulmonary venous pressure, causing pulmonary congestion
- Cardiomegaly is a late sign
Echocardiographic Findings

Echocardiography is the best way to determine:

- Presence of PDA
- Size of PDA
- Hemodynamic significance
- Degree and direction of shunting
Laboratory Findings with PDA

▪ B-Type Natriuretic Peptide (BNP) is released from the heart in response to increased wall tension.

▪ Can be useful to help evaluate the left to right shunting through the ductus.

▪ Normal Value
 • Normal <25
 • >100 indicates significant left to right shunt
PDA: Treatment Modalities

- Conservative measures are employed initially:
 - Fluid Restriction
 - Diuretics (lasix)
 - Positive end-expiratory pressure: useful in reducing left-to-right shunt via PDA
Fluid restriction

- Restricted fluid administration reduces the risk of PDA and NEC and demonstrates trends towards reducing the risk of BPD, IVH, and death (Cochrane Database, 2010)

- Total fluids on admission will be 80mL/kg/day
 - Slow increases

- Be cautious of flushes

- Document, document, document
PDA Treatment Modalities

- Pharmacologic
 - Indomethacin (Indocin)
 - Neoprofin (Ibuprofen)
 - Acetaminophen (Paracetamol)
Indomethacin: Clinical Pharmacology

- Indomethacin, an indole derivative, is one of the most potent inhibitors of the cyclo-oxygenase pathway.
- Inhibits the action of prostaglandin synthetase, and thus inhibits the synthesis of the prostaglandin E series.
- Indomethacin is a potent vasoconstrictor and ↓ cerebral, gastrointestinal, and renal blood flow.
Indomethacin: Clinical Pharmacology

- Elimination half-life is approximately 30 hours (range 15-50 hours)
- Individual differences in rate of distribution, drug metabolism, rate of renal and biliary excretion, and re-entry of drug into the circulation by enterohepatic recirculation all contribute to the variability in plasma clearance.
Indomethacin IV Administration

Special Considerations:
Rapid infusions of intravenous indomethacin have been associated with significant reductions in cerebral blood flow.
UCSF Indomethacin Therapy: Intravenous Administration

- Administer by syringe infusion pump over 30 minutes
- Flush what is left in the tubing with 1 ml NS over 30 minutes
- Administer into dedicated peripheral IV
Indomethacin Therapy

- **Notify provider for...**
 - Creatinine >2mg/dL
 - UO <1mL/kg/hr
 - Abdominal distension
 - Platelets <100k
 - Bilious gastric residual
 - Hemoccult positive stool
UCSF Indomethacin Protocol:

- Prior to administering indomethacin, a BUN, BNP, creatinine, and platelets must be checked.
- Careful monitoring of gastrointestinal and renal status is required during a course of therapy.
Indomethacin Side Effects

- Hypertension
- Edema
- Hyperkalemia
- Dilutional hyponatremia
- Hypoglycemia
- GI bleeding
Possible Adverse Effects

- Renal impairment
- Gastrointestinal dysfunction
 - (Abdominal distension, gastrointestinal bleeding, necrotizing enterocolitis, gastric perforation, gastric ulceration).
- Platelet dysfunction and bleeding tendency.
Contraindications to Indomethacin

- Suspected CHD
- Known GI or renal anomaly
- Poor renal function
- Bleeding disorders or thrombocytopenia
- Necrotizing enterocolitis
- Sepsis
Ibuprofen Therapy: Cochrane 2015

▪ Effective in closing a PDA

▪ As effective as indomethacin in closing a PDA and reduces the risk of NEC and transient renal insufficiency

▪ Given the reduction in NEC noted in this update, ibuprofen currently appears to be the drug of choice

▪ Studies are needed to evaluate the effect of ibuprofen compared to indomethacin treatment on longer term outcomes in infants with PDA
Ibuprofen Side Effects

- Inhibits platelet aggregation, so signs of bleeding should be monitored.
- Ibuprofen solution may be irritating to the tissue; therefore, it should be administered carefully to avoid IV extravasation.
- Ibuprofen is known to displace bilirubin from albumin binding sites, and should be used with caution in patients with an elevated total bilirubin.
Ibuprofen Contraindications

- Proven or suspected infection that is untreated
- Congenital heart disease
- Active bleeding, especially ICH or GI
- Thrombocytopenia, coagulation defects
- Suspected NEC
- Significant impairment of renal function
Ibuprofen – Adverse events

- Bleeding
- Skin lesion/irritation
- Hypoglycemia
- Hypocalcemia
- Adrenal insufficiency
- Respiratory failure
- IVH and renal insufficiency have also been reported
Acetaminophen Therapy

- NSAIDs come with many risks
- Acetaminophen is an alternative for hemodynamically significant PDA
- IV or Oral
- No need to stop feeds
Pharmacy Tip of the Week
UCSF Medical Center & Benioff Children's Hospital

Prophylactic PDA Regimens

INDOMETHACIN

<table>
<thead>
<tr>
<th>Baby Age</th>
<th>Start Time from Birth</th>
<th>Doses</th>
<th>Additional doses required</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 24(^{w}) wks Gestation</td>
<td>Within 24 hours</td>
<td>0 hr 0.1 mg/kg</td>
<td>24 hr 0.1 mg/kg 48 hr 0.1 mg/kg</td>
</tr>
<tr>
<td>≤ 25 (^{w}) wks Gestation + Intubated > 24 h after birth</td>
<td>After 24 hours and before 5th day</td>
<td>0 hr 0.2 mg/kg</td>
<td>24 hr 0.1 mg/kg 48 hr 0.1 mg/kg</td>
</tr>
</tbody>
</table>

Additional doses required:
- Yes, if after the 3rd dose, echo shows open ductus
 - Dose: 0.2 mg/kg at 72 and 96 hr

*Note: MD/NP are required to assess contraindications and place a nursing communication order that the medication is safe to administer.
When requesting medications, nurses are encouraged to notify pharmacy via Inbasket Message that medication appropriateness has been assessed

Indomethacin is not compatible with TPN, lipids, or most other medications

Contraindications to Indomethacin
Hydrocortisone administration within 24 hours, GI anomalies, concern for necrotizing enterocolitis or intestinal perforation, renal abnormalities, platelets < 50,000

INTRAVENOUS ACETAMINOPHEN

<table>
<thead>
<tr>
<th>Baby Age</th>
<th>Start Time from Birth</th>
<th>Doses</th>
<th>Key Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 3/7 - 27 6/7 wks Gestation + Intubated > 24 hours after birth</td>
<td>After 24 hours and before 5th day</td>
<td>1 loading dose: 15 mg/kg & 19 Maintenance doses: 12.5 mg/kg Q6H</td>
<td>Must check trough levels Trough Level: 15 – 20 mg/l. Dose Adjustments: see protocol</td>
</tr>
</tbody>
</table>

Check acetaminophen trough level, just before the third maintenance dose (including whenever there is a change in dose)

References: Lexicomp

Kelsey Jape, PharmD, Sarah Scarpace Lucas, Pharm.D. Department of Pharmaceutical Services PDA = patent ductus arteriosus August 21st, 2017
Early Treatment Versus Delayed Conservative Treatment of the Patent Ductus Arteriosus (PDA:TOLERATE)

- Goal of the trial is to compare 2 treatment approaches
 - Early treatment
 - Conservative approach
- Hypothesis is the treatment of a moderate PDA will decrease need for respiratory support, diuretics, gavage feeding, ligation, and further intervention

https://clinicaltrials.gov/ct2/show/NCT01958320
PDA – Surgical Repair

- Ligation and division through a left posteriolateral thoracotomy without cardiopulmonary bypass
- The vessel is isolated and ligated with a clip or band.
PDA Ligation Complications

▪ Mortality less than 1%
▪ Complications are rare but may include:
 • Injury to the recurrent laryngeal nerve
 • Injury to left phrenic nerve
 • Injury to thoracic duct
 • Ligation of PA
 • Infection
 • Bleeding
PDA Ligation

The aorta and pulmonary trunk are separated

The open ends are closed
References

