Neonatal Respiratory Support: Who Needs What and When?

Tanya Hatfield, RNC-NIC, MSN
Neonatal Outreach Educator

We’ve Come A Long Way...
Changes

- Room air resuscitations with targeted O₂ sats
- Permissive hypercapnia
- High flow nasal cannula (HFNC)
- Ventilatory modes
- Ventilator acquired pneumonia prevention (VAP)
- Suctioning techniques/frequency
- Prophylactic vs Rescue Surfactant

Fetal Pulmonary Development

http://www.embryology.ch/anglais/rrespiratory/phasen01.html
Embryology of the Respiratory System

- Embryonic phase: (1 to 5 wks gestation)
 - Primitive lung bud appears by 24 days postconception

- Pseudoglandular phase: (6 to 16 wks)
 - Branching from main bronchus continues
 - Cartilage forms in trachea

- Late Pseudoglandular phase: (8 to 10 wks)
 - Guts into abdomen
 - Pleuroperitoneal canal closes (diaphragm)
Embryology of the Respiratory System

● Canalicular phase: (17 to 28 wks)
 ○ Critical period in lung development
 ○ Framework for gas exchange portion of lung is set
 ○ Type II endothelial cells appear. Major role in surfactant production
 ○ Surfactant not excreted into alveoli until 10 weeks later

Embryology of the Respiratory System

● Terminal sac phase: (26 to birth)
 ○ Mature, vascularized gas exchange sites form
 ○ Thinning interstitial tissue, capillaries move closer to saccules
 ○ Saccules can function for gas exchange
 ○ Type II cells begin to produce surfactant
Embryology of the Respiratory System

● Alveolar phase: (36 wks to 8 yrs)
 ○ All airway branching is complete
 ○ Epithelial tissue continues to thin out, bringing capillaries in closer contact with respiratory saccules
 ○ After birth, terminal airspaces increase in number from about 20 million to about 300 million total by age 8
 ○ Lung volume increases from about 200cc at birth to about 5.5 liters by age 25.
 ○ Good potential for lung growth postnatally

Embryology of the Respiratory System

● No firm boundaries separating phases
● Gas exchange is possible fairly early in gestation, inefficient
● Pulmonary vascular development follows tissue development
 ○ Tissue differentiation into veins and arteries
 ○ Formation of capillary networks
 ○ Thinning of interstitium
 ○ Muscle layers increase in artery walls, control pulmonary vascular resistance
 ○ Later growth and development includes remodeling of arteries, changes in wall thickness and distribution of muscle within walls
Fetal Pulmonary Vessels and Musculature

- Greater amount of smooth muscle compared to adults
 - Increases tone of vessels, increases resistance to flow
 - Muscle amounts decrease rapidly after birth, especially in first weeks of life. At adult amounts by 4 to 8 weeks.
 - Decrease in muscle aids in fall of pulmonary vascular resistance after birth

Fetal Pulmonary Vessels and Musculature

- Constrictor response (reactivity) of smooth muscle is great
 - Hypoxemia triggers greatest response. Causes high PVR
 - Vessels are “twitchy”: respond to small changes in \(\text{paO}_2 \) with marked vasoconstriction
 - Reactivity continues after birth, especially in term neonates
Fetal Pulmonary Vessels and Musculature

- PVR increases with gestational age
- Vascular tone increases in late gestation
- In utero, pulmonary pressures are equivalent to systemic pressures

Principles of Pulmonary Function

- Newborn susceptible to respiratory distress due to limits on respiratory system:
 - Ribcage not well ossified
 - Respiratory muscles have low endurance and strength
 - Floppy chest wall offers little resistance to collapse
Weak Chest Wall

Principles of Pulmonary Function

- Surface tension
 - Opposes lung inflation, supports lung deflation
 - Depends on alveolar diameter
 - Smaller diameter requires higher pressures for inflation
 - Surfactant is phospholipid
Principles of Pulmonary Function

- Compliance
 - Refers to elasticity or distensibility of lung
 - Expressed as change in volume caused by change in pressure
 - Higher compliance allows for larger volume to be delivered to alveoli per unit of pressure

http://www.embryology.ch/anglais/pcardio/umstellung01.html
Fetal Circulation Review

- Characteristics of fetal circulation:
 - Gas exchange is liquid to liquid
 - Organ of respiration is placenta
 - High flow, low resistance
 - Fetal lungs
 - Low flow, high resistance
 - PA’s constricted
 - High right heart and lung pressures
 - Low left heart pressures
 - Open fetal shunts

http://www.embryology.ch/anglais/pcardio/umstellung01.html
Transition Review

- At birth, infant must start using lungs for gas exchange
 - Respiratory movements initiated
 - Cold, chemoreceptors
 - Entry of air into lungs and expansion of alveoli
 - High opening pressures required
 - Establish FRC
 - Surfactant
 - Increase pulmonary blood flow and redistribute cardiac output
 - Clamping cord, removing low resistance placenta
 - Pulmonary blood flow goes from 10% to 100%

Ventilatory Equipment in DR

- Mask
- Flow inflating bag
- T piece resuscitator
- Self inflating bag
- LMA
Ventilatory Strategies in DR

- Sustained inflation
- Pressure and volume
- Oxygen
- CPAP
- Intubation
- Surfactant

What does the literature show?
CPQCC Initiative for Neonatal Resuscitation - Best Recommended Practices

- Use a Checklist to prepare for all High Risk Deliveries
- Improve Teamwork and communication in the delivery room using pre-briefings, looped communication, and debriefings
- Have a functioning pulse oximeter on and working by 2 minutes

CPQCC Initiative for Neonatal Resuscitation

- Maintain normal temperatures – especially for the ELBW infant
- Optimize initial respiratory support using early CPAP, in an attempt to avoid early intubation and prophylactic surfactant
Pulse Ox for Evaluation of Oxygenation

- Use as a tool to optimize oxygenation
- Should be on and functioning by 2 minutes of Life
- Necessary for managing SpO2 and FiO2
- Not as easy as it looks!

- Where should the pulse ox be placed?

NRP Targeted O2 Sat Parameters

<table>
<thead>
<tr>
<th>Time</th>
<th>Target Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td>60-65%</td>
</tr>
<tr>
<td>2 min</td>
<td>65-70%</td>
</tr>
<tr>
<td>3 min</td>
<td>70-75%</td>
</tr>
<tr>
<td>4 min</td>
<td>75-80%</td>
</tr>
<tr>
<td>5 min</td>
<td>80-85%</td>
</tr>
</tbody>
</table>
Room Air Resuscitation

- Not for all...
- Term vs VLBW
- Room Air vs 100% Oxygen for the VLBW Infant (Wang et al, Pediatrics 2008;121:1083-9)
- Where does the jury stand?

2011 CPQCC Goals for Surfactant Replacement

- Measure: Infants receiving surfactant in the delivery room
- Goal: 0
- Why?
 - Attempt trial of CPAP
 - Have verification of ETT placement before instillation
 - Potential side effects of surfactant
Surfactant: For Those Who Need It, The Earlier the Better

Surfactant Dosing

- **Infasurf** 3 mL/kg
- **Survanta** 4 mL/kg
- **Curosurf** 2.5mL/kg
Surfactant Therapy: Acute Complications

- Sudden deterioration of condition related to:
 - Pneumothorax
 - ETT-extubation, disconnection, plugging
 - Mechanical malfunction
 - Severe hypoxia

Surfactant Therapy: Acute Complications

- Sudden deterioration of condition related to:
 - Increased intracranial pressure
 - Changes in cerebral blood flow if PaCO2 decreases rapidly
 - Intraventricular hemorrhage and periventricular leukomalacia
 - Hypoxic-ischemic brain injury
 - Decreased cardiac output/hypotension
Post Resuscitation Treatment Options

- Watch and wait
- Oxygen
- HFNC
- CPAP
- Intubation

Oxygen

- Indications for
- Delivery options
- Special considerations
- Troubleshooting
- Weaning
Why We Like Cannulas...
Oxygen-A Potent Drug

- Establish SpO2/PaO2 range
- What is optimal? 88-92? 88-95?
- What does the evidence show?

- Desaturation orders
- Avoid titrate orders
- Alarms

Oxygen Delivery Options

- BBO2
- Hood
- Nasal Cannula
- High Flow Nasal Cannula

- Weaning...
High Flow Nasal Cannula

- About
- Indications for
- Best candidates
- Special considerations
- Troubleshooting
- Weaning

HFNC: About

- Binasal cannulae capable of delivering “high flow” >1 L/minute with or without oxygen
- Used extensively for older children with viral respiratory infections
- Use in NICUs increasing due to:
 - Relative ease of use
 - Easier access to the baby’s face
 - Less bulky
 - Less skin trauma than CPAP
Heated High Flow Nasal Cannula (HHFNC)

- Pros:
 - Less skin and mucosal damage
 - Set up less bulky
 - Easier to position

- Cons:
 - Lack of randomized controlled trial to support use*
 - Inability to measure distending pressure

(HHFNC) The Evidence

- University of Utah ongoing study comparing HHFNC to NCPAP with study completion summer 2013
HFNC: Indications for

- RDS
- Apnea of prematurity
- Post extubation support
- Primary therapy after birth
- Weaning after CPAP

Special Considerations

- Circuit temperature
- Skin and mucosa
- Inability to Accurately Measure Distending Pressure
- Factors affecting pressure:
 - Leak
 - Flow
 - Cannula size
 - Infant size
Troubleshooting

● Hot circuit
● Alarms
● Increased respiratory distress
● Loss of flow
 ○ Nasal secretions?
 ○ Disconnections?
Initial Settings @ UCSF

- Start 2-3 L
- Max of 5-6L
- Always start low and titrate up
- Consider CPAP when you get to 5 L
- Inability to accurately measure distending pressures can lead to pneumothorax
CPAP History

- Positive Pressure Therapy was first used by Poultan and Oxan in 1936\(^{(1)}\)
- Harrison\(^{(2)}\) is credited to first recognize it in infants with RDS.
- In 1971, Gregory\(^{(3)}\) used CPAP for the first time in neonates with RDS.
- Over the last 3 decades, several methods of applying CPAP have become routinely available
CPAP Indications

- RDS
- Apnea of prematurity
- Treatment of hypoxemia
- Generalized Atelectasis
- Recent Extubation
- Pulmonary Edema
- Transient tachypnea
- Increased WOB
- Mechanical Vent Weaning
- Upper Airway Obstructions

Why CPAP Works

- Increase FRC
- Reduce Work of Breathing
- Increase PaO2 with lower FIO2
- Decreases Pulmonary Vascular Resistance
Balloons

Functional Residual Capacity (FRC)

PEEP helps…
• Establish FRC
• Conserve Surfactant
• Thus reducing frequency and severity of RDS

http://dx.doi.org/10.1053/siny.2001.005756
Why NCPAP Works

- Airway and diaphragm are splinted open in the premature infant. This improves FRC, V/Q matching, and prevents collapsing of the surfactant deficient alveoli

- Large internal diameter of the nasal prongs reduces flow resistance and WOB

Why NCPAP Works

Reduce the dependence of intubation

- Facilitate normal mucociliary flow
- Lessen the possibility of airway injury due to secondary infections and aspiration
- Avoids ETT triggering of inflammatory response found in early stages of CLD

PPV with no Peak end expiratory pressure (PEEP), no FRC

PPV with PEEP & FRC maintenance
Cardiovascular Effects

- Giving optimal CPAP pressures should improve metabolic acidosis and cardiac output
- Relieves signs of cardiac decompensation associated with left-to-right shunt

Contraindications

- Upper airway abnormalities
- Inadequate spontaneous respirations
- Untreated CDH or T-E Fistula
- Untreated pneumothorax
- Bronchiolitis
- Severe cardiac instability
NCPAP Monitoring

- Work of breathing
- Clinical assessment
- Nares/Skin
- Equipment and alarms
- Weaning
- CXR

- Patient Considerations?

Adverse Effects

- Lung-over distension
- Gastric insufflation
- Nasal breakdown
- Obstruction
- CO₂ retention
Procedure

- Obtain appropriate orders from medical staff for CPAP
- Proper sizing for bonnet and mask or prongs
- Don’t forget to get your head circumference first!
- Apply Nasal CPAP separately after proper hat is placed

Equipment

- Monitoring Gas Mixer
- Universal Generator with prongs or masks
- Delivery Circuit
- Caps/Bonnets
- Humidified Device
Nasal CPAP Applications

- Parameters
 - FiO₂
 - CPAP Level
 - Flow
 - Temperature
 - Alarm Settings

Alarms

- Set +3cmH₂O above and +2cmH₂O below desired peep level
- Oxygen plus/minus .5 desired FIO₂
- 30 second alarm button
- Safety limit valves terminates flow if pressure >12cmH₂O
Monitoring

- Work of Breathing
- Respiratory rate
- Chest excursions
- Chest retractions

What to Look for on Chest X-ray

- Expansion
- Atelectasis
- RDS
RDS

Weaning

- Patient’s condition will guide the weaning
- Weaned peep accordingly:
 - CXR
 - ABG
 - WOB
Nursing Care of Baby on CPAP

- Full assessment of nares and skin q 6
- Keeping nasal mask or prongs in place with minimal pressure
- Orogastric tube should be placed to vent
- Gentle suction to clear mucus Q4-6PRN
- Massage nare to increase circulation**
- Regular change in position Q3-4hours

Skin Care-Do’s and Don’t’s
CPAP and Skin Considerations
“Snubbing”

Stage III nasal trauma.

Fischer C et al. Arch Dis Child Fetal Neonatal Ed
doi:10.1136/adc.2009.179416

Positioning Techniques
Loss of PEEP

The Intubated Patient

- Why intubate?
- Monitoring
- Nursing care
- Comfort considerations
- Trouble shooting
Indications for Intubation

- **Gasping**
- Inadequate respiratory drive
- Continued need for PPV
- Airway obstruction
- Congenital anomalies
- Worsening apnea and bradycardia
- Bradycardia unresponsive to effective ventilation
- Signs of respiratory failure
Indications for Intubation

- Signs of respiratory failure
 - Rapidly increasing O2 requirement
 - Worsening retractions
 - Hypercarbia
 - Respiratory Acidosis
 - Signs of exhaustion
Respiratory Assessment of Ventilated Patient

- Ventilator breaths vs. patient breaths
 - Spontaneous respirations will be abdominal
 - Ventilator breaths will have even chest rise and fall
- Ventilator settings
 - Check ventilator to confirm that ordered vent settings are being delivered
 - Check alarms

Respiratory Assessment

- Chest movement
 - Observe for good chest rise with each breath
 - Symmetrical movement of chest
- Tube position
 - ETT securely attached to lip
 - Lip to tip measurement
 - No kinks or pulling of ETT
 - Tubing always positioned lower than patient to avoid moisture rainout into ETT
What’s missing?

Nursing Care of the Intubated Patient
VAP Prevention

Ventilator Circuits:
- Keep capped if not on patient. (Hand ventilation or turning patient)
- Do not put open (uncapped) circuit on bed
- Do not “tap” open circuit on bed to clear water
- Drain water away from patient
- Drain water into 4x4, glove, or cloth diaper and dispose.
- Make sure water from circuit cannot drain into ETT (Also important with CPAP and HFNC)
- Keep circuit so it drains down to heater, instead of to patient. (Patient’s head is higher than where the circuit enters the bed)
Elevating the Head of the Bed:

Intubated:
- Elevate the head of the isolette or radiant warmer 15-30 degrees
- This has been shown to reduce work of breathing and decrease the risk of aspiration of oral secretions

How do we know when to suction?

- Are we suctioning simply because a certain amount of time has passed?
- Is the patient desaturating due to other factors, such as pain?
- Can we time suctioning after giving pain or sedation meds to help the baby tolerate it better?
- Are we providing enough time between suction passes for the patient to recover adequately?
Indications for suctioning:

- Decreased oxygen saturations and/or frequent desaturations
- Coarse breath sounds
- Coughing and/or agitation
- Increased work of breathing

Methods of Suction

- Open
- Closed
Minimize use of Saline:

- **Mucus and water/saline do not mix, even when shaken**

- One study showed that suctioning retrieves only 11–19% of instilled saline. The un-retrieved saline could interfere with gas exchange and worsen your patient’s condition.

- Saline is associated with increased desaturation and slower recovery after suctioning.

- Saline instillation moves bacteria from the lining of the endotracheal tube into the lungs. In a laboratory study, it was shown that instilling saline during suctioning moved five times more bacteria from the endotracheal tube into the airway, compared to suctioning without saline.

Minimize use of Saline:

- It is important to clear your suction catheter with saline after each pass. You will see that you are actually removing secretions without instilling saline to the patient.

- If judged necessary in cases where suctioning without saline has failed to clear the ETT, use the smallest amount of saline possible.

- Suctioning without saline has not been shown to increase the incidence of plugged endotracheal tubes.
Pain and Sedation for Intubation

- Premedication

- Ongoing care
 - Comfort measures
 - Pharmacologic measures
Blood Gases

<table>
<thead>
<tr>
<th></th>
<th>Arterial</th>
<th>Capillary</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH*</td>
<td>7.30 - 7.45</td>
<td>Same</td>
</tr>
<tr>
<td>PCO₂*</td>
<td>35 - 45 mmHg</td>
<td>35 - 50 mmHg</td>
</tr>
<tr>
<td>PO₂ (on room air)</td>
<td>60 – 80 mmHg</td>
<td>--- (not useful)</td>
</tr>
<tr>
<td>HCO₃ Bicarb</td>
<td>19 – 26 mEq/L</td>
<td>19 – 26 mEq/L</td>
</tr>
<tr>
<td>Base Excess</td>
<td>-4 to +4</td>
<td>-4 to +4</td>
</tr>
</tbody>
</table>

*preterm infants have lower acceptable pH, and higher CO₂

CO₂ = ACID

HCO₃ = BASE

Blood pH Levels

- Death: 6
- Acidosis: 7
- Normal pH: 7.35
- Alkalosis: 7.45
- Death: 7.8
- Death: 9
ACIDOSIS
pH <7.35
↑ CO₂ Respiratory
↓ HCO₃ Metabolic

ALKALOSIS
pH >7.45
↑ HCO₃ Metabolic
↓ CO₂ Respiratory

Blood Gases
1. Where did the gas come from?
2. Is the pH: low, normal or high?
3. If pH low: ↑ CO₂, ↓ HCO₃, or mixed
4. If pH high: ↑ HCO₃, ↓ CO₂, or mixed
Respiratory Acidosis
pCO₂ ≥45mmHg, pH <7.35

Causes...
- Loss of tidal volume
 - Lung disease
 - Pneumothorax
 - Airway obstruction
 - “Mechanical” interference

- Loss of respiratory drive
 - Poor effort
 - Neurologic injury
 - Apnea

Treatment-
- Renal compensation
- CPAP
- Positive Pressure Ventilation
- Intubation
 - ↑ tidal volume and/or rate

Chronic Respiratory acidosis will see a rise in HCO₃⁻
Metabolic Acidosis

HCO$_3^-$ <= 18 mEq/L, pH < 7.35

Causes...
- ↑ Lactic acid production
 - Shock
 - Sepsis
 - Cardiac disease
 - Hypothermia
 - Hypoglycemia
- Excessive loss of HCO$_3^-$
- Inborn error of metabolism

HCO$_3^-$ <= 18 mmol/L, pH < 7.35

Identify and treat underlying causes!
- Hypoxia
- Hypotension
- Infection
- Hypoglycemia
- Hypothermia

Medications...
- NS bolus, Bicarb
Sodium Bicarbonate… useless therapy?

- Efficacy and safety of sodium bicarbonate replacement therapy unproven
- Still used in severe acidosis
- Not recommended in resuscitation
 - Lack of efficacy
 - Potential for harm
- Not recommended for preterm infants
 - Increased mortality
 - Increased IVH

Never to be given if patient not ventilating well

Respiratory Alkalosis

pCO₂ <= 35mmHg, pH >7.45

Causes...
Too much ventilation!!
- Reduce rate/TV
- Abnormal control of breathing
- During HIE

Hypocarbia & long-term effects
- Cerebral vasoconstriction
- ↑ poor outcomes, ↑ death, ↑ disability
 - ↑ PVL, ↑ CP, ↑ neuro deficits
Metabolic Alkalosis
HCO₃ > 25mmol/L, pH > 7.45

Causes...
- Hypochloremia
 - Diuretics, GI obstruction
- Too much Bicarbonate

Treatment
- Treat underlying cause
 - Chloride replacement

Case 1: Noah
- Term baby
- Delivered by emergent c/s due to fetal distress
- RR 26, HR 124, weak respiratory effort
- SpO₂ 90% on 0.50 FiO₂ via NC
- Hypotonic
- Capillary blood gas
 - pH 7.16, PCO₂ 70, HCO₃ 21, BE -7
Case 1: Noah

- Had an asphyxial insult
- Inadequate respirations \rightarrow high PCO_2 (respiratory acidosis)
- Tissue hypoxia \rightarrow metabolic acidosis
- What to do now?

Case 2: Mia

- 28 weeks’ gestation
- Developed RDS
- Now intubated and ventilated
- Blood gas:
 - pH 7.47, PCO_2 28, HCO_3 22, BD 4
 - What does Mia have?
Case 2: Mia

- Respiratory alkalosis
- Excessive ventilation
- Correct by
 - Decreasing ventilator rate
 - Decreasing tidal volume or
 - Decreasing inspiratory pressure

Extra questions

- Arterial blood gas result: pH 7.35, PCO2 23, HCO3 (bicarbonate) 12. The correct interpretation of this blood gas is:
 a) compensated metabolic acidosis.
 b) compensated mixed metabolic and respiratory acidosis.
 c) compensated respiratory acidosis.
Extra questions

- Arterial blood gas result: pH 7.18, PCO2 63, HCO3 (bicarbonate) 23. The correct interpretation of this blood gas is
 a) uncompensated metabolic acidosis.
 b) uncompensated mixed metabolic and respiratory acidosis.
 c) uncompensated respiratory acidosis.

Extra questions

- A term infant has suspected pneumonia and is on a ventilator. The blood gas reveals a severe metabolic and respiratory acidosis and low arterial oxygen tension. Which one of the following statements is FALSE?
 a) Blended oxygen should be administered and oxygen saturation should be monitored
 b) Sodium bicarbonate should be given immediately to treat the acidosis
 c) Tissue hypoxia may lead to cellular necrosis and subsequent organ damage
Extra questions

- Arterial blood gas result: pH 7.25, PCO2 36, HCO3 (bicarbonate) 15.
 The correct interpretation of this blood gas is

a) compensated respiratory acidosis.
b) uncompensated metabolic acidosis.
c) uncompensated mixed metabolic and respiratory acidosis.

Extra questions

Arterial blood gas result: pH 7.03, PCO2 55, HCO3 (bicarbonate) 14.
The correct interpretation of this blood gas is

a) uncompensated metabolic acidosis.
b) uncompensated mixed metabolic and respiratory acidosis.
c) uncompensated respiratory acidosis.
Case Studies-Case 1

- You attend a cesarean section for a 38 week infant. Mom is a G1 Po-1. Maternal history is significant for a planned home birth with arrest of labor. The midwife briefs the team that they are expecting a big baby. Ultrasound done in triage reveals polyhydramnios. No other risk factors. Membranes are intact.
- When uterine incision is made there is a gush of amniotic fluid. The OB suctions 2 canisters of amniotic fluid from the uterus

Case Study 1 Continued

- Infant is placed on the warmer and you note frothy oral secretions and respiratory distress. Preductal sat reading is 68% at one minute. The mouth is suctioned for copious secretions and you attempt to suction more deeply* but the suction catheter only advances 5 cm.
- Respiratory distress worsens with grunting, retractions and tachypnea and an O2 sat reading of 68% at 5 mins of life in 40% FiO2
- Baby receives Mask CPAP and FiO2 is increased
- You take baby to the NICU
Your Chest Xray...

- What are we seeing?
- What is our differential diagnosis?
- What is the best approach to respiratory support for this baby?

Case Study 2

- A 32 year old G2-P1 carrying twins at 30 weeks gestation presents to labor and delivery with a bulging amniotic sac and delivery is imminent
- She receives one dose of Betamethasone prior to delivery
- The team is assembled. Twin A is delivered vaginally.
- How would you support this baby?
- What do you base your decision making on?
- When would you escalate respiratory support?
Case Study 2

- You are notified that twin B is a breech extraction
- How do you prepare your team?
- What risk factors are present that may complicate care?

- Baby B is delivered, limp and apneic - how would support for this twin differ from Twin A’s resuscitation?
Case Study 3

- A woman presents to your unit at 36 weeks gestation and delivery is imminent. She has been followed at UCSF by Fetal Treatment with the diagnosis of severe left sided congenital diaphragmatic hernia where she was supposed to deliver. She is too unstable to transport.
- How do you prepare for this delivery?
- What are the immediate steps that need to be taken when the baby is delivered?
- How do we ventilate this baby?
Case Study 3

- What can be done to optimize ventilation based on the x-ray?

Tip of Replogle

Bowel Dilated with Air Inhibiting Lung Expansion

Stomach

Tip of Replogle
References

Thank You!

Questions?
tanya.hatfield@ucsf.edu