Neurological and Neuromuscular Disorders

Elizabeth Papp, RN, MSN, CNS
June, 2018
Neuromuscular Birth Injuries: Overview

- Nerve damage caused by trauma during delivery
 - Prolonged labor
 - LGA
 - CPD
 - Abnormal presentation
 - Instrument-assisted delivery
- Nerves most commonly implicated
 - Cervical nerves 5, 6, 7, and 8
 - Thoracic nerve 1
 - Cranial nerve VII
 - Phrenic nerve
Neuromuscular Birth Injuries: Brachial Plexus Injuries

- **Presentation**
 - **Erb’s palsy:**
 - No spontaneous abduction or external rotation of affected arm (absent Moro)
 - Hand function is often preserved (grasp reflex present)
 - **Global plexus palsy (Erb-Duchenne-Klumpke):**
 - Flaccidity of affected arm and hand
 - Absent Moro and grasp reflexes
 - **Klumpke palsy:**
 - Flaccidity of hand and fingers of affected arm (present Moro, absent grasp)

- **Cause**
 - **Erb’s palsy:**
 - Most common, injury to nerve roots C5 and C6
 - **Global plexus palsy (Erb-Duchenne-Klumpke):**
 - Second most common, injury to nerve roots C5 through T1
 - **Klumpke palsy:**
 - Injury to nerve roots C8 and T1 only
Neuromuscular Birth Injuries: Brachial Plexus Injuries

- **Management**
 - Physical examination to assess extent of neurological involvement
 - X-ray if concern for fracture or shoulder dislocation
 - Neurology, orthopedic, and PT consultation
 - Passive ROM exercises when post-injury neuritis has resolved (7-10 days)
 - Use of wrist and/or finger splints, if indicated
 - Caregiver education regarding importance of passive exercise to maintain joint function

- **Complications**
 - Contractures may develop without passive exercise
 - Decreased sensation may lead to developmental deficits in affected arm

- **Outcome**
 - Spontaneous resolution generally occurs within 12 months
 - Best predictor of recovery is return of biceps function by 3 months of age
Neuromuscular Birth Injuries: Phrenic Nerve Injury

- **Presentation**
 - Typically associated with brachial plexus injury, but can occur alone
 - Respiratory distress often requiring oxygen and supportive ventilation

- **Cause**
 - Damage to phrenic nerve impairs nervous system stimulation of ipsilateral half of diaphragm

- **Management**
 - Supportive therapies including respiratory support
 - Surgical plication of diaphragm, if indicated

- **Complications**
 - Respiratory failure, pulmonary infection, growth failure, death

- **Outcome**
 - Mortality rate is 10 – 15%
 - Surviving infants generally recover within a year
Neuromuscular Birth Injuries: Facial Nerve Palsy

• **Presentation**
 – Persistent open eye on affected side
 – Suck with drooling on affected side
 – Mouth drawn to normal side when crying

• **Cause**
 – Trauma to nerve sheath (CN VII) during birth
 – Associated with instrument-assisted deliveries (forceps)

• **Management**
 – Provide artificial tears to open eye, a patch may be needed
 – Family support

• **Complications**
 – Feeding impairment

• **Outcome**
 – Spontaneous resolution is common (> 90% recover without intervention)
Hypoxic Ischemic Encephalopathy (HIE): Overview

- Cerebral injury associated with hypoxia and ischemia
- Incidence: 1-2 cases per 1000 term births with a mortality rate of 10 – 20%
- Hypoxemia: decrease in amount of oxygen circulating in the blood
- Ischemia: decrease in blood flow to brain (decreased perfusion)
 - Decreased glucose available
- Asphyxia:
 - Impairment of oxygen and carbon dioxide exchange
 - Initially causes increase in cerebral blood flow
 - Increasing levels of carbon dioxide contribute to acidosis
- Associated with widespread systemic injury secondary to hypoxic-ischemic insult
Hypoxic Ischemic Encephalopathy (HIE): Overview

- Associated antepartum conditions (20% of cases):
 - Maternal hypotension, placental vasculopathy
 - Contribute to decreased fetal reserves
- Intrapartum events (35% of cases):
 - Prolapsed cord, abruption, traumatic birth
- Combination of antepartum and intrapartum (35% of cases)
- Neonatal conditions (10% of cases):
 - Severe pulmonary disease, recurrent apnea
 - Congenital heart disease
- Preterm infant is at greater risk of HIE than term infant
HIE: Presentation

- **Stage I (mild encephalopathy)**
 - Hyperalert, normal muscle tone, active suck, strong Moro reflex, (+) myoclonus, hyper-responsive to stimuli

- **Stage II (moderate)**
 - Lethargy and hypotonic, (+) myoclonus, seizures common, weak reflexes with overall increased tendon reflexes

- **Stage III (severe)**
 - Comatose, apnea and bradycardia, seizures typical within 12 hours of birth, severe hypotonia and flaccidity, absent reflexes, pupils often unequal, variable reactivity, poor light reflex
HIE: Management

• **Diagnostic testing:**
 – Neurologic examination (Sarnat criteria)
 – Conventional EEG (cEEG)
 – Amplitude-integrated EEG (aEEG)
 – Neuroimaging
 • Head ultrasound
 • CT scan
 • MRI

• **Interventions:**
 – Resuscitation and stabilization
 – Therapeutic hypothermia
 – Family support and education
 – Palliative care
HIE: Complications

- Multisystem disorders are common with stage II and III HIE
 - Renal and cardiac abnormalities
 - Pulmonary hypertension
 - Liver function abnormalities
 - Thrombocytopenia
 - Disseminated intravascular coagulation (DIC)
HIE: Outcome

• Mild encephalopathy:
 – Recovery expected
 – Good outcome with very small risk of long-term disability

• Moderate encephalopathy (in absence of therapeutic hypothermia):
 – 6% death
 – 30% disability

• Severe encephalopathy (in absence of therapeutic hypothermia):
 – 60% death
 – 100% disability
Intraventricular Hemorrhage (IVH): Overview

- **Significant injury in the preterm brain**
- **Germinal matrix hemorrhage:**
 - Germinal matrix is immature and highly vascularized area of preterm infant brain
 - Site of neuron and glia development
 - Poorly supported and fragile blood vessels, sensitive to blood pressure fluctuation and reperfusion injury
 - Hypotension/hypertension, perinatal asphyxia, rapid volume infusions, myocardial failure, hypothermia, hyperosmolarity, etc.
 - Involution of germinal matrix occurs with advancing gestational age, germinal matrix disappears by 36 weeks, GM hemorrhage less common in infants > 32 weeks
- **Germinal matrix hemorrhage may extend to fill lateral ventricles and worsening IVH**
Intraventricular Hemorrhage (IVH): Overview

- **Incidence:**
 - 30 – 40% of infants <1500 grams or <30 weeks PMA
 - <228 weeks PMA have a 3-fold higher risk than 28 – 31 weeks PMA
 - 2 – 3% in term infants

- **Timing of onset:**
 - 50% by 24 hours
 - 80% by 48 hours
 - 90% by 72 hours
IVH: Presentation

- Sudden deterioration: oxygen desaturation, bradycardia, metabolic acidosis, falling hematocrit, hypotonia, shock, hyperglycemia
- Symptoms of worsening hemorrhage: full or tense fontanelle, increased ventilator support, seizures, apnea, decreased activity, decreased level of consciousness
- Rapid and profound clinical decline associated with increased severity of IVH
- Grading of IVH
IVH: Management

• **Neuroimaging**
 – Routine head ultrasound screening of infants born at < 30 weeks PMA
 – Serial head ultrasounds to monitor progression
 – MRI if parenchymal injury is suspected

• **Supportive Care**
 – Minimize stimulation
 – Avoid wide swings in blood pressure
 – Closely monitor respiratory support
 – Avoid acidosis, hypercarbia, fluid overload
IVH: Complications

- Neurodevelopmental disabilities
- Progressive hydrocephalus
- Seizures
- Death
IVH: Outcome

- **Mild/small IVH**
 - Neurodevelopmental disabilities (NDD) similar to premature infants without hemorrhage, major NDD 10%

- **Moderate IVH**
 - Major NDD in 40%
 - Mortality rate 10%
 - Progressive hydrocephalus in 20%

- **Severe IVH**
 - Major NDD in 80%
 - Mortality rate 50 – 60%
 - Progressive hydrocephalus common
Periventricular Leukomalacia (PVL): Overview

- **Severe white matter injury** highly associated with preterm birth
- **Focal injury: cystic necrotic lesion** found bilaterally
 - Nonhemorrhagic and symmetric
 - Caused by ischemia from fluctuations in arterial circulation
- **Diffuse white matter injury**
 - Noncystic lesions associated with disturbances in myelinization
 - Often associated with germinal matrix hemorrhages or IVH
- **Leukomalacia**: ”softening” of white matter
PVL: Presentation

- **Acute phase:**
 - Subtle
 - Altered muscle tone in lower extremities, hypotension, lethargy

- **6 – 10 weeks after white matter injury**
 - Irritable, hypertonic, increased flexion of arms and extension of legs, frequent tremors and startles
 - Moro reflex abnormalities
PVL: Management

• **Diagnostic evaluation:**
 – Head ultrasound
 – CT scan or MRI

• **Interventions:**
 – Treat primary insult
 – Supportive care to prevent further hypoxic-ischemic damage
 – Treatment of hydrocephalus and associated neurological sequalea
 – Family support and anticipatory guidance
 – Developmental care, PT/OT, feeding support
PVL: Complications

- Spastic diplegia
- Intellectual deficits, learning disorders
- Hyperactivity disorders
- Visual impairment
- Lower limb weakness
PVL: Outcome

- Determined by location and extent of injury
- Spastic diplegia reported in as many as 50% of infants with PVL
- Neurodevelopmental follow-up and developmental support improve outcomes related to learning and behavioral disorders
Seizures: Overview

- Sign of malfunctioning neuronal system
- Excessive simultaneous electrical discharge

Causes include:
- Metabolic encephalopathies
- Structural abnormalities
- Meningitis
- Drug withdrawal
- Genetic etiology
Seizures: Overview

- **Metabolic encephalopathies:**
 - Hypoglycemia
 - Ischemia
 - Hypoxemia
 - Hypo- or hypernatremia,
 - Hypocalcemia
 - Hypomagnesemia
 - Inborn error of metabolism
 - Pyridoxine deficiency
 - Hyperammononemia
Seizures: Overview

- **Structural abnormalities:**
 - HIE
 - IVH
 - Intrapartum trauma
 - Perinatal stroke
 - Cerebral dysgenesis
Seizures: Overview

- **Other causes:**
 - Meningitis
 - Group B streptococcus
 - Listeria monocytogenes
 - TORCH etiology
 - Drug withdrawal
 - Prenatal or postnatal exposure to opiates
 - Genetic (familial)
 - Self-limiting
Seizures:
Presentation

- **Subtle (motor automatisms)**
 - Rowing, stepping, pedaling movements, eye blinking/fluttering, staring, lacrimation, smacking of lips, salivation, sucking
- **Clonic**
 - Rhythmic movements of muscle groups in a focal distribution
 - Rapid phase followed by a slow return to movement
 - Not stopped with flexion
- **Tonic (postural)**
 - Sustained generalized tonic extension of all extremities or flexion of the upper limbs with extension of the lower extremities
 - Characteristic of preterm infants with severe IVH
 - May closely mimic decerebrate or decorticate posturing
- **Multifocal clonic (generalized)**
 - Clonic movements that migrate from one limb to another without a specific pattern
 - Associated with significant morbidity and mortality
Seizures: Management

• Diagnostic evaluation:
 – Review perinatal/neonatal clinical course and family history
 – Blood glucose immediately to rule out hypoglycemia
 – Physical examination
 – Lab studies (blood gas, electrolytes, CBC with differential)
 – Septic workup if infectious etiology suspected
 • Blood, urine, CSF cultures
 • Nasal and rectal swabs if HSV suspected
 – Metabolic studies
 – Head ultrasound, CT, MRI
 – EEG
Seizures: Management

- Supportive care
- Careful assessment of clinical seizure activity
- Medication management:
 - Phenobarbital
 - Fosphenytoin
 - Levetiracetam
 - Lorazepam
Seizures:
Complications and Outcome

- Untreated sustained seizures exacerbate underlying pathology
- Outcome varies significantly based upon etiology:
 - Familial seizures: often benign and self-limiting
 - Refractory seizures associated with HIE: severe morbidity and mortality
Subdural Hemorrhage: Overview

- Rupture of draining veins and sinuses that occupy the subdural space
- Due to molding and torsional forces on the head during birth
- Risk factors:
 - Macrosomia, CPD, shoulder dystocia
 - Traumatic birth
 - Vaginal breech presentation
 - Malpresentation
 - Instrument-assisted vaginal birth
Subdural Hemorrhage: Presentation

- Subdural hemorrhage accounts for less than 10% of all intracranial bleeds
- **Large hemorrhage:**
 - Nuchal rigidity, coma, abnormal respiratory pattern, unreactive pupils, signs of increased ICP, seizures, signs of hypovolemia and anemia
- **Small hemorrhage:**
 - Subtle or few signs until hematoma presses on brain tissue, may cause deterioration in mental status, development of hydrocephalus, seizures
Subdural Hemorrhage: Management

- Supportive care and seizure management
 - Volume replacement, respiratory support, pressor support
- Close monitoring of neurologic status
- Subdural tap or subdural shunt in infants with increasing ICP
- Monitor and intervention for progressive hydrocephalus
 - May occur weeks after the hemorrhage
Subdural Hemorrhage:
Complications

- Hydrocephalus
- Seizures
- Neurodevelopmental impairment
Subdural Hemorrhage: *Outcome*

- Outcome dependent upon severity of hemorrhage
- Mortality rate may be as high as 45%
Hydrocephalus: Overview

• Excess of CSF in ventricular system
• Caused by inadequate reabsorption of CSF
 – Aqueductal outflow obstruction (non-communicating hydrocephalus)
 • Dandy-Walker cyst, myelomeningocele with Arnold-Chiari malformation, infection
 – Flow between lateral ventricles and subarachnoid space (communicating, non-obstructive hydrocephalus)
Hydrocephalus:
Presentation

- Increasing head circumference
- Widened sutures
- Full, bulging, or tense fontanelles
- Setting-sun eyes
- Vomiting, lethargy, irritability
Hydrocephalus: Management

- Diagnostic testing: determine underlying cause, identify site of obstruction (if obstructive)
- Supportive care: decreased stimuli, minimal handling, monitor head circumference measurements
- Mechanical CSF drainage:
 - Short term: lumbar puncture or direct ventricular access
 - Long term: ventriculo-peritoneal shunt
 - Procedural and post-op care
Hydrocephalus: Complications

- Neurological deterioration associated with increased ICP
- Infection of VP shunt, infection associated with LP and ventricular access
Hydrocephalus:

Outcome

- Determined by underlying cause
Neural Tube Defects: Overview

• **Primary NTD**
 – Failure of neural tube closure or disruption of closed tube
 – Occurs between 18-25 days of gestation
 – Location of neural tube failure determines presentation
 – Anencephaly, encephalocele, myelomeningocele

• **Secondary NTD**
 – Abnormal development of the lower sacral or coccygeal segments during secondary neurulation
 – Defects present primarily in lumbosacral spinal region
 – Skin typically intact over lesion
 – Meningocele, lipomeningocele, sacral agenesis/dysgenesis
Neural Tube Defects: Anencephaly

- Presentation
- Etiology
- Management
- Complications
- Outcome
Neural Tube Defects: Encephalocele

- Presentation
- Etiology
- Management
- Complications
- Outcome
Neural Tube Defects: Myelomeningocele

- Presentation
- Etiology
- Management
- Complications
- Outcome
Neural Tube Defects: Meningocele

- Presentation
- Etiology
- Management
- Complications
- Outcome
Neural Tube Defects: Sacral Agenesis/Dysgenesis

- Presentation
- Etiology
- Management
- Complications
- Outcome